Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning. However, it consumes excessive learning time due to the existence of straggler devices. In this paper, a novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning and to improve the communication-and-computation efficiency. Specifically, a problem of jointly optimizing the aggregation topology and computing speed is formulated to minimize the weighted summation of energy consumption and latency. To solve the mixed-integer nonlinear problem, we propose a novel solution method of penalty-based successive convex approximation, which converges to a stationary point of the primal problem under mild conditions. To facilitate real-time decision making, an imitation-learning based method is developed, where deep neural networks (DNNs) are trained offline to mimic the penalty-based method, and the trained imitation DNNs are deployed at the edge devices for online inference. Thereby, an efficient imitate-learning based approach is seamlessly integrated into the TOFEL framework. Simulation results demonstrate that the proposed TOFEL scheme accelerates the federated learning process, and achieves a higher energy efficiency. Moreover, we apply the scheme to 3D object detection with multi-vehicle point cloud datasets in the CARLA simulator. The results confirm the superior learning performance of the TOFEL scheme over conventional designs with the same resource and deadline constraints.


翻译:联邦边缘学习(FEEL)被认为是实现隐私保护分布式学习的一个很有希望的范例,但是,它消耗了过多的学习时间,因为存在分流装置。在本文中,提出了一个新的地形优化联邦边缘学习(TOFEL)计划,以解决联邦学习中的异质问题,提高交流和计算效率。具体地说,共同优化组合表层和计算速度的问题,以尽量减少能源消耗和延缓的加权加和。为了解决混合整数非线性问题,我们提出了基于惩罚的连续曲线近似的新式解决办法,该办法在温和条件下会合于原始问题的固定点。为了便利实时决策,开发了以模拟学习为基础的方法,对深度神经网络(DNNS)进行了离线培训,以模拟基于惩罚的方法,而经过培训的模拟DNNNS在边缘装置上部署,以进行在线推导。因此,高效的模拟速度曲线曲线近近近近的曲线近近近近近近比值方法,以模拟方法演示了我们学习的进度。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员