This paper addresses the problem of safety-critical control for systems with unknown dynamics. It has been shown that stabilizing affine control systems to desired (sets of) states while optimizing quadratic costs subject to state and control constraints can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs). Our recently proposed High Order CBFs (HOCBFs) can accommodate constraints of arbitrary relative degree. One of the main challenges in this approach is obtaining accurate system dynamics, which is especially difficult for systems that require online model identification given limited computational resources and system data. In order to approximate the real unmodelled system dynamics, we define adaptive affine control dynamics which are updated based on the error states obtained by real-time sensor measurements. We define a HOCBF for a safety requirement on the unmodelled system based on the adaptive dynamics and error states, and reformulate the safety-critical control problem as the above mentioned QP. Then, we determine the events required to solve the QP in order to guarantee safety. We also derive a condition that guarantees the satisfaction of the HOCBF constraint between events. We illustrate the effectiveness of the proposed framework on an adaptive cruise control problem and compare it with the classical time-driven approach.


翻译:本文论述对动态不明的系统的安全临界控制问题,已经表明,稳定松动控制系统,使之达到理想的(一组)状态,同时优化受状态和控制制约的二次成本,可以通过使用控制屏障功能和控制Lyapunov功能(CLFFs),降低成一系列二次程序(QPs),我们最近提出的高排序基准(HOCBFs)可以适应任意相对程度的限制,这一方法的主要挑战之一是获得准确的系统动态,由于计算资源和系统数据有限,对于需要在线模型识别的系统来说,这种动态特别困难。为了接近真正的非模拟系统动态,我们根据实时传感器测量得出的错误状态,界定了适应型的二次程序控制动态。我们根据适应性动态和误差状态,为未经建模的系统确定一个安全要求确定一个HOCFFS,并重新界定上文提到的安全临界控制问题。然后,我们确定解决QP系统需要在线模型识别的系统特别困难。为了接近真正的非模拟系统动态,我们根据实时传感器测量得出的错误状态,界定了适应性组合控制动态动态的动态动态动态动态动态,我们还比较了一种典型控制状态。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《强化学习》简介小册,24页pdf
专知会员服务
270+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年5月22日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《强化学习》简介小册,24页pdf
专知会员服务
270+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员