Despite decades of work in fast reactive planning and control, challenges remain in developing reactive motion policies on non-Euclidean manifolds and enforcing constraints while avoiding undesirable potential function local minima. This work presents a principled method for designing and fusing desired robot task behaviors into a stable robot motion policy, leveraging the geometric structure of non-Euclidean manifolds, which are prevalent in robot configuration and task spaces. Our Pullback Bundle Dynamical Systems (PBDS) framework drives desired task behaviors and prioritizes tasks using separate position-dependent and position/velocity-dependent Riemannian metrics, respectively, thus simplifying individual task design and modular composition of tasks. For enforcing constraints, we provide a class of metric-based tasks, eliminating local minima by imposing non-conflicting potential functions only for goal region attraction. We also provide a geometric optimization problem for combining tasks inspired by Riemannian Motion Policies (RMPs) that reduces to a simple least-squares problem, and we show that our approach is geometrically well-defined. We demonstrate the PBDS framework on the sphere $\mathbb S^2$ and at 300-500 Hz on a manipulator arm, and we provide task design guidance and an open-source Julia library implementation. Overall, this work presents a fast, easy-to-use framework for generating motion policies without unwanted potential function local minima on general manifolds.


翻译:尽管在快速反应式规划和控制方面进行了数十年的工作,但在制订非欧洲-太平洋多元体的被动运动政策以及执行限制措施方面仍然存在挑战,同时避免不可取的潜在功能当地迷你。这项工作为设计和将所希望的机器人任务行为转化为稳定的机器人运动政策提供了一个原则性方法,利用非欧洲-太平洋多元体的几何结构,这种结构在机器人配置和任务空间中十分普遍。我们的拉回组合组合动态系统框架驱动着人们期望的任务行为,并分别使用不同的位置依赖和依赖位置/速度的里曼尼标准来确定任务的优先次序,从而简化了单个任务设计和任务模块构成。为了实施限制,我们提供了一套基于基准的任务,通过只对目标区域的吸引力强加非冲突性潜在功能来消除当地小型任务。我们还为将里曼移动政策(RMPPPs)所启发的任务组合起来提供了一个几何最佳化的问题,将这种任务降低到一个最起码的小型问题,我们展示了从地理角度来界定了我们的方法,从而简化了任务设计和模块组合组合组合。我们展示了一套基于$\mathb SQ2500的模型设计,在不易操作上提供了一种快速的流程。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Arxiv
1+阅读 · 2021年5月18日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Top
微信扫码咨询专知VIP会员