We provide a polynomial lower bound on the minimum singular value of an $m\times m$ random matrix $M$ with jointly Gaussian entries, under a polynomial bound on the matrix norm and a global small-ball probability bound $$\inf_{x,y\in S^{m-1}}\mathbb{P}\left(\left|x^* M y\right|>m^{-O(1)}\right)\ge \frac{1}{2}.$$ With the additional assumption that $M$ is self-adjoint, the global small-ball probability bound can be replaced by a weaker version. We establish two matrix anti-concentration inequalities, which lower bound the minimum singular values of the sum of independent positive semidefinite self-adjoint matrices and the linear combination of independent random matrices with independent Gaussian coefficients. Both are under a global small-ball probability assumption. As a major application, we prove a better singular value bound for the Krylov space matrix, which leads to a faster and simpler algorithm for solving sparse linear systems. Our algorithm runs in $\tilde{O}\left(n^{\frac{3\omega-4}{\omega-1}}\right)=O(n^{2.2716})$ time where $\omega<2.37286$ is the matrix multiplication exponent, improving on the previous fastest one in $\tilde{O}\left(n^{\frac{5\omega-4}{\omega+1}}\right)=O(n^{2.33165})$ time by Peng and Vempala.


翻译:$165=m=mm 随机基质 $M$的最小单值上,我们提供一个多元下限 165=mm 随机基质 $M$ 与 Gausian 联合条目,在矩阵规范的多元基质约束下,并提供一个全球小球概率以$\inf ⁇ xx,ym-1=mathb{P ⁇ left{left{left}M\x ⁇ M y\r\\\\\\\\m\\\%1}O(1)\\\right\\\\\\\\\\%2}$美元为最低单值,加上一个额外的假设,即$M$(美元)是自调整的,全球小球概率的值可以用一个较弱的版本来取代。我们设置两个矩阵的反浓缩不平等性基质基质基质,这个基质基质的最小值是独立的正正正半确定基质自联合基质基质基质基质总和独立高斯系数的最小值。 两种基质概率假设的主要应用,我们证明Krylov=_____________________________%______}l=xxxl=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
专知会员服务
84+阅读 · 2020年12月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月12日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月12日
Top
微信扫码咨询专知VIP会员