We study the computational complexity of the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets, or equivalently the Termination Problem for affine loops with compact semialgebraic guard sets. Consider the fragment of the theory of the reals consisting of negation-free $\exists \forall$-sentences without strict inequalities. We derive several equivalent characterisations of the associated complexity class which demonstrate its robustness and illustrate its expressive power. We show that the Compact Escape Problem is complete for this class.
翻译:我们研究离散时间线性动态系统在紧凑的半叶眼组群中的计算复杂性,或相等于紧凑的半叶眼组群的直线动态系统的计算复杂性,或相等于紧凑的半叶眼组群的直线性循环的终止问题。 考虑真实理论的碎片, 包括无否定的 $\ existence \ forall$- minutes, 且没有严格的不平等。 我们从相关复杂类中得出一些等同的特征, 表明其坚固性, 并展示其表达力。 我们显示对于这一类来说, 缩影问题已经完全解决了 。