In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
翻译:鉴于NNIH的研究领域标准(RDoC),功能性神经成像、新技术和方法的出现为发展准确和个性化的精神病预测和诊断提供了新的机会。机器学习(ML)和人工智能(AI)技术在精密精神病学的新时代正在发挥越来越关键的作用。将ML/AI与神经调节技术相结合,有可能在临床实践和有效治疗治疗中提供可解释的解决办法。先进的可磨损和移动技术也要求ML/AI在移动精神保健中的新作用,在这个审查中,我们通过将神经成像、神经调节和先进的移动技术结合在精神病学实践中,对ML方法和应用进行全面审查。此外,我们审查ML在分子切视和交叉切分辨生物标记技术在精确精神病学中的作用。我们进一步讨论了封闭式人类口腔方式中的可解释性AI(XAI)和因果关系测试,并强调ML在多媒体信息提取和多式联运数据精确度研究中的潜力。最后,我们讨论了概念和将来的ML机会。