Reinforcement learning is one of the most popular approaches for automated game playing. This method allows an agent to estimate the expected utility of its state in order to make optimal actions in an unknown environment. We seek to apply reinforcement learning algorithms to the game Flappy Bird. We implement SARSA and Q-Learning with some modifications such as $\epsilon$-greedy policy, discretization and backward updates. We find that SARSA and Q-Learning outperform the baseline, regularly achieving scores of 1400+, with the highest in-game score of 2069.


翻译:强化学习是最受欢迎的自动游戏游戏方法之一。 这种方法使代理商能够估计其状态的预期效用, 以便在未知环境中采取最佳行动。 我们试图将强化学习算法应用到游戏 Flappy Bird 。 我们实施SASA 和 Q- Learning, 进行一些修改, 如 $\ epsilon$- greedy 政策、 离散和后退更新 。 我们发现SASA 和 Q- Lecear 都超过了基准, 经常达到 1400 + 的分数, 最高在赛中得分为 2069 。

0
下载
关闭预览

相关内容

Flappy Bird (飞扬的小鸟 像素鸟、下坠的小鸟、笨鸟) 是一款由来自越南的独立游戏开发者Dong Nguyen所开发的作品,游戏于2013年5月24日上线,并在2014年2月突然暴红。
2014年2月,《Flappy Bird》被开发者本人从苹果及谷歌应用商店撤下。2014年8月份正式回归APP STORE,正式加入Flappy迷们期待已久的多人对战模式。游戏中玩家必须控制一只小鸟,跨越由各种不同长度水管所组成的障碍。
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
27+阅读 · 2020年1月3日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
27+阅读 · 2020年1月3日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员