This paper updates the cognitive model, firstly by creating two systems and then unifying them over the same structure. It represents information at the semantic level only, where labelled patterns are aggregated into a 'type-set-match' form. It is described that the aggregations can be used to match across regions with potentially different functionality and therefore give the structure a required amount of flexibility. The theory is that if the model stores information which can be transposed in consistent ways, then that will result in knowledge and some level of intelligence. As part of the design, patterns have to become distinct and that is realised by unique paths through shared aggregated structures. An ensemble-hierarchy relation also helps to define uniqueness through local feedback that may even be an action potential. The earlier models are still consistent in terms of their proposed functionality, but some of the architecture boundaries have been moved to match them up more closely. After pattern optimisation and tree-like aggregations, the two main models differ only in their upper, more intelligent level. One provides a propositional logic for mutually inclusive or exclusive pattern groups and sequences, while the other provides a behaviour script that is constructed from node types. It can be seen that these two views are complimentary and would allow some control over behaviours, as well as memories, that might get selected.


翻译:本文更新了认知模型, 首先通过创建两个系统, 然后将它们统一到同一结构中。 它只代表语义层面的信息, 标记的图案将集成为“ 类型设置匹配” 的形式。 描述中, 汇总可以用来匹配不同区域的潜在功能, 从而给结构带来必要的灵活性。 理论是, 如果模型存储的信息能够以一致的方式被移植, 那么这将导致知识和某种程度的智能。 作为设计的一部分, 模式必须变得独特, 并且通过共享的聚合结构的独特路径实现。 组合式等级关系还有助于通过地方反馈来定义独特性, 甚至可能是一种行动潜力。 早期的模型在拟议功能方面仍然是一致的, 但有些结构界限已经移动到更接近它们。 在模式优化和树类集合之后, 两种主要模型只在高层次和智能层次上产生差异。 其中一个模型为相互包容或排他性模式组合和序列提供了一种建议性逻辑, 而另一个模型则提供了一种行为脚本, 因为它是来自一种不理解的缩略图。 它可以使两种理解得到两种理解。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年7月7日
Imagination-enabled Robot Perception
Arxiv
0+阅读 · 2021年7月6日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员