This paper presents the first significant object detection framework, NeRF-RPN, which directly operates on NeRF. Given a pre-trained NeRF model, NeRF-RPN aims to detect all bounding boxes of objects in a scene. By exploiting a novel voxel representation that incorporates multi-scale 3D neural volumetric features, we demonstrate it is possible to regress the 3D bounding boxes of objects in NeRF directly without rendering the NeRF at any viewpoint. NeRF-RPN is a general framework and can be applied to detect objects without class labels. We experimented the NeRF-RPN with various backbone architectures, RPN head designs and loss functions. All of them can be trained in an end-to-end manner to estimate high quality 3D bounding boxes. To facilitate future research in object detection for NeRF, we built a new benchmark dataset which consists of both synthetic and real-world data with careful labeling and clean up. Please click https://youtu.be/M8_4Ih1CJjE for visualizing the 3D region proposals by our NeRF-RPN. Code and dataset will be made available.
翻译:本文介绍了第一个重要的物体探测框架,即NERF-RPN, 它直接在 NERF上运行。 根据预先培训的NERF模型, NERF-RPN 的目标是在现场探测所有捆绑的物体。通过利用包含多尺寸 3D 神经体积特征的新型 voxel 表示法,我们证明可以直接在 NERF 中反向三维捆绑的物体盒,而不会在任何观点上将 NERF 转换为 NERF 。 NERF-RPN 是一个一般框架,可以用于探测没有等级标签的物体。我们用各种主干结构、RPN 头设计和损失功能试验 NERF-RPN 。所有物体都可以以端到端的方式接受培训,以估计高质量 3D 捆绑框。为了便利未来对NRF 目标探测的研究,我们将建立一个由合成和真实世界数据组成的新的基准数据集。请点击 https://youtu.be/M8_4IH1JJE, 来将我们的NRF-RPC 代码和数据设置。