The world has suffered from COVID-19 (SARS-CoV-2) for the last two years, causing much damage and change in people's daily lives. Thus, automated detection of COVID-19 utilizing deep learning on chest computed tomography (CT) scans became promising, which helps correct diagnosis efficiently. Recently, transformer-based COVID-19 detection method on CT is proposed to utilize 3D information in CT volume. However, its sampling method for selecting slices is not optimal. To leverage rich 3D information in CT volume, we propose a transformer-based COVID-19 detection using a novel data curation and adaptive sampling method using gray level co-occurrence matrices (GLCM). To train the model which consists of CNN layer, followed by transformer architecture, we first executed data curation based on lung segmentation and utilized the entropy of GLCM value of every slice in CT volumes to select important slices for the prediction. The experimental results show that the proposed method improve the detection performance with large margin without much difficult modification to the model.


翻译:过去两年来,世界遭受了COVID-19(SARS-COV-2)(COVID-19)(SARS-COV-2)(COVID-19)的折磨,给人们的日常生活造成巨大的损害和变化,因此,利用胸腔计算透视(CT)扫描的深层学习,自动检测COVID-19(COVID-19)变得很有希望,这有助于有效的诊断。最近,提议在CT体积上使用基于变压器的COVID-19(COVID-19)探测方法,以3D(CARS-COV-2)为3D(CT)信息。然而,其选择切片的取样方法并不理想。为了利用CT体积中丰富的3D(3D)信息,我们建议使用新的数据整理和适应性取样方法,使用灰度的共振动层(GLCMM)来检测COVID-19(COVID-19)的检测方法。为了培训由CNN系统层组成的模型,然后是变压器结构,我们首先根据肺分解法进行数据整理,并利用CT体积中每一切片体积的GLCM值的辛基体积的星值来选择重要的重要切片片片段进行预测。实验。实验结果显示。实验结果显示。实验结果表明,不难于模型。我们提出的方法在很大的大差差差。实验结果显示。实验。我们提出的方法用大。实验结果显示。

0
下载
关闭预览

相关内容

【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
105+阅读 · 2022年3月20日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
0+阅读 · 2022年8月25日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员