In this work, we propose a method for the compression of the coupling matrix in volume\hyp surface integral equation (VSIE) formulations. VSIE methods are used for electromagnetic analysis in magnetic resonance imaging (MRI) applications, for which the coupling matrix models the interactions between the coil and the body. We showed that these effects can be represented as independent interactions between remote elements in 3D tensor formats, and subsequently decomposed with the Tucker model. Our method can work in tandem with the adaptive cross approximation technique to provide fast solutions of VSIE problems. We demonstrated that our compression approaches can enable the use of VSIE matrices of prohibitive memory requirements, by allowing the effective use of modern graphical processing units (GPUs) to accelerate the arising matrix\hyp vector products. This is critical to enable numerical MRI simulations at clinical voxel resolutions in a feasible computation time. In this paper, we demonstrate that the VSIE matrix\hyp vector products needed to calculate the electromagnetic field produced by an MRI coil inside a numerical body model with $1$ mm$^3$ voxel resolution, could be performed in $\sim 33$ seconds in a GPU, after compressing the associated coupling matrix from $\sim 80$ TB to $\sim 43$ MB.


翻译:在这项工作中,我们提出了一个压缩卷积表面组合方程式组合矩阵的方法。 VSIE 方法用于磁共振成像(MRI)应用中的电磁分析,磁共振成像(MRI)应用中的电磁分析,为此,组合矩阵模型模型模拟卷状与体体之间的相互作用。我们表明,这些效应可以作为以3D 高压格式的远程元素之间的独立互动,然后与塔克模型分离。我们的方法可以与适应性交叉近似技术同步,为VSIE问题提供快速解决方案。我们证明,我们的压缩方法可以使VSIE 模型能够使用高压内存要求的VSIE矩阵,方法是允许有效利用现代图形处理器(GPUs)来加速生成的矩阵hyp矢量产品。这对于在可行的计算时间里,在临床 voxel 分辨率上进行数字的MRI 模拟至关重要。 在本文中,我们证明VSIE 矩阵产品需要用一个数字体模型,用1mm$3美元的Voxress 分辨率后,可以在GMBIM 30 的MBMIS 分辨率中以33 秒进行计算。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年3月15日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员