We present a glasses type wearable device to detect emotions from a human face in an unobtrusive manner. The device is designed to gather multi channel responses from the user face naturally and continuously while the user is wearing it. The multi channel responses include physiological responses of the facial muscles and organs based on electrodermal activity (EDA) and photoplethysmogram. We conducted experiments to determine the optimal positions of EDA sensors on the wearable device because EDA signal quality is very sensitive to the sensing position. In addition to the physiological data, the device can capture the image region representing local facial expressions around the left eye via a built in camera. In this study, we developed and validated an algorithm to recognize emotions using multi channel responses obtained from the device. The results show that the emotion recognition algorithm using only local facial expressions has an accuracy of 78 percent at classifying emotions. Using multi channel data, this accuracy was increased by 10.1 percent. This unobtrusive wearable system with facial multi channel responses is very useful for monitoring a user emotions in daily life, which has a huge potential for use in the healthcare industry.


翻译:我们展示了一个眼镜式的磨损装置,以不受侵扰的方式从人脸上检测情感。该装置的设计是为了在用户戴它时自然和持续地收集用户脸部的多频道反应。多频道反应包括基于电极活动(EDA)和光膜图的面部肌肉和器官生理反应。我们进行了实验,以确定EDA传感器在可磨损装置上的最佳位置,因为 EDA 信号质量对感测位置非常敏感。除了生理数据外,该装置还可以通过摄像头来捕捉代表左眼周围地方面部表现的图像区域。在本研究中,我们开发并验证了一种算法,用从设备获得的多频道反应来识别情绪。结果显示,在对情绪进行分类时,仅使用当地面部表达的情感识别算法精确度为78%。使用多频道数据,这种精确度提高了10.1%。这个不显性磨损系统加上面多频道反应对于监测日常生活中的用户情绪非常有用,因为后者在保健行业中有很大的用途。

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
4+阅读 · 2020年3月27日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员