Owing to the data explosion and rapid development of artificial intelligence (AI), particularly deep neural networks (DNNs), the ever-increasing demand for large-scale matrix-vector multiplication has become one of the major issues in machine learning (ML). Training and evaluating such neural networks rely on heavy computational resources, resulting in significant system latency and power consumption. To overcome these issues, analog computing using optical interferometric-based linear processors have recently appeared as promising candidates in accelerating matrix-vector multiplication and lowering power consumption. On the other hand, radio frequency (RF) electromagnetic waves can also exhibit similar advantages as the optical counterpart by performing analog computation at light speed with lower power. Furthermore, RF devices have extra benefits such as lower cost, mature fabrication, and analog-digital mixed design simplicity, which has great potential in realizing affordable, scalable, low latency, low power, near-sensor radio frequency neural network (RFNN) that may greatly enrich RF signal processing capability. In this work, we propose a 2X2 reconfigurable linear RF analog processor in theory and experiment, which can be applied as a matrix multiplier in an artificial neural network (ANN). The proposed device can be utilized to realize a 2X2 simple RFNN for data classification. An 8X8 linear analog processor formed by 28 RFNN devices are also applied in a 4-layer ANN for Modified National Institute of Standards and Technology (MNIST) dataset classification.


翻译:由于数据爆炸和人工智能(AI)特别是深度神经网络(DNN)的快速发展,对大规模矩阵向量乘法的需求已成为机器学习(ML)中的主要问题之一。训练和评估这样的神经网络依赖于重型计算资源,导致显着的系统延迟和功耗。为了克服这些问题,光学干涉仪线性处理器上的模拟计算最近出现为加速矩阵向量乘法和降低功耗的有希望的候选项之一。另一方面,射频(RF)电磁波也可以通过在光速下执行模拟计算以及更低的功率来展现类似的优势,从而在实现可扩展、低延迟、低功耗、近传感器的射频神经网络(RFNN)方面具有极大的潜力,这可能会极大地丰富射频信号处理能力。在这项工作中,我们提出了一个理论和实验中的2x2可重构线性射频模拟处理器,可用作人工神经网络(ANN)中的矩阵乘法器。该设备可用于实现2x2简单的RFNN用于数据分类。形成28个RFNN器件的8x8线性模拟处理器还应用于4层ANN中的Modified National Institute of Standards and Technology(MNIST)数据集分类。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【边缘智能】边缘计算驱动的深度学习加速技术
产业智能官
20+阅读 · 2019年2月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【边缘智能】边缘计算驱动的深度学习加速技术
产业智能官
20+阅读 · 2019年2月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员