Overparametrization has been remarkably successful for deep learning studies. This study investigates an overlooked but important aspect of overparametrized neural networks, that is, the null components in the parameters of neural networks, or the ghosts. Since deep learning is not explicitly regularized, typical deep learning solutions contain null components. In this paper, we present a structure theorem of the null space for a general class of neural networks. Specifically, we show that any null element can be uniquely written by the linear combination of ridgelet transforms. In general, it is quite difficult to fully characterize the null space of an arbitrarily given operator. Therefore, the structure theorem is a great advantage for understanding a complicated landscape of neural network parameters. As applications, we discuss the roles of ghosts on the generalization performance of deep learning.
翻译:超临界化对于深层学习研究来说非常成功。 本研究调查了超平衡神经网络一个被忽视但很重要的方面,即神经网络参数的无效组成部分或幽灵。 由于深层学习没有被明确规范化,典型的深层学习解决方案包含无效组成部分。 在本文中,我们为神经网络的普通类提供了一个空域的结构理论。 具体地说, 我们显示任何空元素都可以由脊椎变异的线性组合来独创。 一般来说, 很难充分描述任意指定的操作者的空域。 因此, 结构理论是理解复杂的神经网络参数的极大优势。 作为应用, 我们讨论幽灵在深层学习一般表现中的作用。