Instance-level object re-identification is a fundamental computer vision task, with applications from image retrieval to intelligent monitoring and fraud detection. In this work, we propose the novel task of damaged object re-identification, which aims at distinguishing changes in visual appearance due to deformations or missing parts from subtle intra-class variations. To explore this task, we leverage the power of computer-generated imagery to create, in a semi-automatic fashion, high-quality synthetic images of the same bike before and after a damage occurs. The resulting dataset, Bent & Broken Bicycles (BBBicycles), contains 39,200 images and 2,800 unique bike instances spanning 20 different bike models. As a baseline for this task, we propose TransReI3D, a multi-task, transformer-based deep network unifying damage detection (framed as a multi-label classification task) with object re-identification. The BBBicycles dataset is available at https://huggingface.co/datasets/GrainsPolito/BBBicycles
翻译:目标物体再识别是一种基本的计算机视觉任务,从图像检索到智能监控和欺诈检测等应用都有涉及。本文提出了一项新颖的任务:损坏物体的再识别,旨在区分由变形或缺失部分导致的视觉外观变化与细微的类内变化。为了探索这一任务,我们利用计算机生成的图像技术,半自动创建了同一辆自行车在损坏前后的高质量合成图像。得到的数据集,Bent & Broken Bicycles (BBBicycles),包含39,200张图像和2,800个不同的自行车实例,涵盖20个不同的自行车型号。作为该任务的基线,我们提出了TransReI3D,一个基于多任务和Transformer的深度网络,将损坏检测(作为一种多标签分类任务)与对象再识别结合在一起。BBBicycles数据集可在https://huggingface.co/datasets/GrainsPolito/BBBicycles 获取。