Estimating causal relations is vital in understanding the complex interactions in multivariate time series. Non-linear coupling of variables is one of the major challenges inaccurate estimation of cause-effect relations. In this paper, we propose to use deep autoregressive networks (DeepAR) in tandem with counterfactual analysis to infer nonlinear causal relations in multivariate time series. We extend the concept of Granger causality using probabilistic forecasting with DeepAR. Since deep networks can neither handle missing input nor out-of-distribution intervention, we propose to use the Knockoffs framework (Barberand Cand`es, 2015) for generating intervention variables and consequently counterfactual probabilistic forecasting. Knockoff samples are independent of their output given the observed variables and exchangeable with their counterpart variables without changing the underlying distribution of the data. We test our method on synthetic as well as real-world time series datasets. Overall our method outperforms the widely used vector autoregressive Granger causality and PCMCI in detecting nonlinear causal dependency in multivariate time series.
翻译:估计因果关系对于理解多变时间序列中的复杂互动关系至关重要。 变量的非线性组合是主要挑战之一, 对因果关系的不准确估计。 在本文中,我们提议使用深度自动递减网络(DeepAR),同时进行反事实分析,在多变时间序列中推论非线性因果关系。 我们利用与深海AR的概率预测扩展了 " 引因性 " 概念。 由于深网络既不能处理缺失的输入,也不能处理分配外的干预,因此我们提议使用 " 击顶框架 " (Barberand Cand 'es, 2015) 来生成干预变量,并随后进行反事实概率预测。 击决样本独立于其产出, 原因是观测到的变量与对应变量可以互换,而不会改变数据的基本分布。 我们测试我们的合成方法和真实世界时间序列数据集。 我们的方法总体上超越了广泛使用的矢量自动递增性重因果关系和多变数时间序列中发现非线性因果关系。