In this paper we present PoliFL, a decentralized, edge-based framework that supports heterogeneous privacy policies for federated learning. We evaluate our system on three use cases that train models with sensitive user data collected by mobile phones - predictive text, image classification, and notification engagement prediction - on a Raspberry Pi edge device. We find that PoliFL is able to perform accurate model training and inference within reasonable resource and time budgets while also enforcing heterogeneous privacy policies.
翻译:在本文中,我们介绍了PoliFL,这是一个分散的、以边缘为基础的框架,它支持联邦学习的多种隐私政策。我们评估了三个使用案例的系统,这三个案例用移动电话收集的敏感用户数据来培训模型 — — 预测文本、图像分类和通知参与预测 — — 使用“草莓皮边装置 ” ( Raspberry Pi fidge ) 。 我们发现,PoliFL能够在合理的资源和时间预算范围内进行准确的模型培训和推论,同时也执行不同的隐私政策。