Efficient data transfers over high-speed, long-distance shared networks require proper utilization of available network bandwidth. Using parallel TCP streams enables an application to utilize network parallelism and can improve transfer throughput; however, finding the optimum number of parallel TCP streams is challenging due to nondeterministic background traffic sharing the same network. Additionally, the non-stationary, multi-objectiveness, and partially-observable nature of network signals in the host systems add extra complexity in finding the current network condition. In this work, we present a novel approach to finding the optimum number of parallel TCP streams using deep reinforcement learning (RL). We devise a learning-based algorithm capable of generalizing different network conditions and utilizing the available network bandwidth intelligently. Contrary to rule-based heuristics that do not generalize well in unknown network scenarios, our RL-based solution can dynamically discover and adapt the parallel TCP stream numbers to maximize the network bandwidth utilization without congesting the network and ensure fairness among contending transfers. We extensively evaluated our RL-based algorithm's performance, comparing it with several state-of-the-art online optimization algorithms. The results show that our RL-based algorithm can find near-optimal solutions 40% faster while achieving up to 15% higher throughput. We also show that, unlike a greedy algorithm, our devised RL-based algorithm can avoid network congestion and fairly share the available network resources among contending transfers.
翻译:在高速、长距离共享网络上,数据传递效率高、长距离共享网络需要适当利用现有的网络带宽。使用平行的TCP流可以应用一种应用来利用网络平行现象,并可以改进传输量;然而,找到平行TCP流的最佳数量具有挑战性,因为没有确定背景背景通信共享同一网络。此外,东道系统中网络信号的非固定性、多目标性和部分可观察性增加了查找当前网络状况的更多复杂性。在这项工作中,我们提出了一个新颖的方法,利用深层强化学习(RL)来寻找平行的TCP流的最佳数量。我们设计了一个基于学习的基于学习的算法,能够推广不同的网络条件,并明智地利用现有的网络带宽。与在未知网络情景中不甚普及的基于规则的超常现象相反,我们基于RL的解决方案可以动态地发现并调整平行的TCP流数,以最大限度地利用网络带宽频带带宽,同时又确保对传输公平性。我们广泛评价了基于RL的算法的运行情况,将它与一些基于最先进的网络条件的网络条件进行比较,同时显示我们通过15 %的在线优化算算算算结果,我们也可以找到一个更高的R-ral-ral 。