We address the problem of facial expression recognition and show a possible solution using a quantum machine learning approach. In order to define an efficient classifier for a given dataset, our approach substantially exploits quantum interference. By representing face expressions via graphs, we define a classifier as a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states. We discuss the accuracy of the quantum classifier evaluated on the quantum simulator available on the IBM Quantum Experience cloud platform, and compare it with the accuracy of one of the best classical classifier.
翻译:我们用量子机器学习方法来解决面部表达识别问题,并展示一种可能的解决办法。为了为特定数据集定义有效的分类器,我们的方法在很大程度上利用量子干扰。通过图形代表面部表达式,我们将一个分类器定义为量子电路,将图形相近矩阵编码成某些适当界定的量子状态的振幅。我们讨论了在IBM 量子模拟器上评估的量子分类器的准确性,并将其与最佳古典分类器的准确性进行比较。