Electronic health records (EHRs) provide an efficient approach to generating rich longitudinal datasets. However, since patients visit as needed, the assessment times are typically irregular and may be related to the patient's health. Failing to account for this informative assessment process could result in biased estimates of the disease course. In this paper, we show how estimation of the disease trajectory can be enhanced by leveraging an underutilized piece of information that is often in the patient's EHR: physician-recommended intervals between visits. Specifically, we demonstrate how recommended intervals can be used in characterizing the assessment process, and in investigating the sensitivity of the results to assessment not at random (ANAR). We illustrate our proposed approach in a clinic-based cohort study of juvenile dermatomyositis (JDM). In this study, we found that the recommended intervals explained 78% of the variability in the assessment times. Under a specific case of ANAR where we assumed that a worsening in disease led to patients visiting earlier than recommended, the estimated population average disease activity trajectory was shifted downward relative to the trajectory assuming assessment at random. These results demonstrate the crucial role recommended intervals play in improving the rigour of the analysis by allowing us to assess both the plausibility of the AAR assumption and the sensitivity of the results to departures from this assumption. Thus, we advise that studies using irregular longitudinal data should extract recommended visit intervals and follow our procedure for incorporating them into analyses.
翻译:暂无翻译