In cone-beam X-ray transmission imaging, due to the divergence of X-rays, imaged structures with different depths have different magnification factors on an X-ray detector, which results in perspective deformation. Perspective deformation causes difficulty in direct, accurate geometric assessments of anatomical structures. In this work, to reduce perspective deformation in X-ray images acquired from regular cone-beam computed tomography (CBCT) systems, we investigate on learning perspective deformation, i.e., converting perspective projections into orthogonal projections. Directly converting a single perspective projection image into an orthogonal projection image is extremely challenging due to the lack of depth information. Therefore, we propose to utilize one additional perspective projection, a complementary (180-degree) or orthogonal (90-degree) view, to provide a certain degree of depth information. Furthermore, learning perspective deformation in different spatial domains is investigated. Our proposed method is evaluated on numerical spherical bead phantoms as well as patients' chest and head X-ray data. The experiments on numerical bead phantom data demonstrate that learning perspective deformation in polar coordinates has significant advantages over learning in Cartesian coordinates, as root-mean-square error (RMSE) decreases from 5.31 to 1.40, while learning in log-polar coordinates has no further considerable improvement (RMSE = 1.85). In addition, using a complementary view (RMSE = 1.40) is better than an orthogonal view (RMSE = 3.87). The experiments on patients' chest and head data demonstrate that learning perspective deformation using dual complementary views is also applicable in anatomical X-ray data, allowing accurate cardiothoracic ratio measurements in chest X-ray images and cephalometric analysis in synthetic cephalograms from cone-beam X-ray projections.


翻译:在Cone-beam X射线传输成像中,由于X射线的差异,具有不同深度的图像结构在X射线检测器上具有不同的放大系数,这导致视觉变形。视觉变形导致对解剖结构进行直接、准确的几何评估的困难。在这项工作中,为了减少从常规的CBCT(CBCT)系统获得的X射线图像的变形观点,我们调查的是学习观点变形,即将直观预测转换成直角预测。将单一视角投影图像直接转换成直角投影图像,由于缺少深度信息,因此具有极大的挑战性。因此,我们提议利用另外的31度预测,即补充(180度)或正方形(90度),以提供某种深度信息。此外,对不同空间域的学习角度变形进行了调查。我们提出的方法是进一步评估数值球变变形,将光度预测转换成或病人胸部和头部的变形数据。在数值变形变形图上进行的实验,1.Beal-hototooal-roal-modeal dal dal dal dal dal dal dal dal dal dal dal dal dal dal decal disal disal disal disal disal disal disal disal 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2018年4月3日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员