This article presents a filter for state-space models based on Bellman's dynamic programming principle applied to the mode estimator. The proposed Bellman filter (BF) generalises the Kalman filter (KF) including its extended and iterated versions, while remaining equally inexpensive computationally. The BF is also (unlike the KF) robust under heavy-tailed observation noise and applicable to a wider range of (nonlinear and non-Gaussian) models, involving e.g. count, intensity, duration, volatility and dependence. (Hyper)parameters are estimated by numerically maximising a BF-implied log-likelihood decomposition, which is an alternative to the classic prediction-error decomposition for linear Gaussian models. Simulation studies reveal that the BF performs on par with (or even outperforms) state-of-the-art importance-sampling techniques, while requiring a fraction of the computational cost, being straightforward to implement and offering full scalability to higher dimensional state spaces.
翻译:本文章根据Bellman的动态编程原则,为适用于模式估计器的状态空间模型提供了一个过滤器。 Bellman 过滤器(BF) 将 Kalman 过滤器(KF) 包括扩展版和迭代版进行概括,同时在计算上保持同样廉价。 BF (与KF 不同) 在重尾观测噪音下也很强大,适用于范围更广的(非线性和非Gausian ) 模型,包括计数、强度、持续期、挥发性和依赖性。 (Hyper) 参数是用数字最大化的 BF 隐含的日志相似分解法估算的,这是对线形高山模型的经典预测器分解法的一种替代。模拟研究显示, BF 与(或甚至超越) 状态重要抽样技术相当,同时需要计算成本的一小部分,可以直接实施,并且可以向更高维度的空间提供完全的缩略度。