The driving behavior at urban intersections is very complex. It is thus crucial for autonomous vehicles to comprehensively understand challenging urban traffic scenes in order to navigate intersections and prevent accidents. In this paper, we introduce a stereo vision and 3D digital map based approach to spatially and temporally analyze the traffic situation at urban intersections. Stereo vision is used to detect, classify and track obstacles, while a 3D digital map is used to improve ego-localization and provide context in terms of road-layout information. A probabilistic approach that temporally integrates these geometric, semantic, dynamic and contextual cues is presented. We qualitatively and quantitatively evaluate our proposed technique on real traffic data collected at an urban canyon in Tokyo to demonstrate the efficacy of the system in providing comprehensive awareness of the traffic surroundings.
翻译:城市十字路口的驱动行为非常复杂,因此,自主车辆全面理解挑战性城市交通场景,以引导十字路口并防止事故发生,至关重要。在本文件中,我们采用了立体视角和基于3D数字地图的方法,对城市十字路口的交通状况进行空间和时间分析,采用立体视角探测、分类和跟踪障碍,同时使用3D数字地图来改善自我定位,提供路段信息背景。我们介绍了一种概率方法,即时间性地整合这些几何、语义、动态和背景提示。我们从质量和数量上评价了我们在东京城市峡谷收集的真实交通数据的拟议技术,以展示该系统在全面认识交通环境方面的功效。