This article improves on existing methods to estimate the spectral density of stationary and nonstationary time series assuming a Gaussian process prior. By optimising an appropriate eigendecomposition using a smoothing spline covariance structure, our method more appropriately models data with both simple and complex periodic structure. We further justify the utility of this optimal eigendecomposition by investigating the performance of alternative covariance functions other than smoothing splines. We show that the optimal eigendecomposition provides a material improvement, while the other covariance functions under examination do not, all performing comparatively well as the smoothing spline. During our computational investigation, we introduce new validation metrics for the spectral density estimate, inspired from the physical sciences. We validate our models in an extensive simulation study and demonstrate superior performance with real data.
翻译:本条改进了现有方法,用以估计假定在Gaussian 进程之前的固定和非静止时间序列的光谱密度。通过优化使用平滑的样板共变结构进行的适当微分变,我们的方法更适合使用简单和复杂的周期结构的模型数据。我们通过调查除平滑的样条外的替代共变函数的性能,进一步证明这种最佳微分变的效用。我们表明,最佳的eigendecomposition提供了物质改进,而正在审查的其他常变功能则没有,所有功能都相对和平稳。在我们进行计算调查期间,我们采用了新的光谱密度估计验证指标,这些指标来自物理科学。我们通过广泛的模拟研究验证了我们的模型,并用真实数据展示了优异的性能。