In this paper we describe an approach for anomaly detection and its explainability in multivariate functional data. The anomaly detection procedure consists of transforming the series into a vector of features and using an Isolation forest algorithm. The explainable procedure is based on the computation of the SHAP coefficients and on the use of a supervised decision tree. We apply it on simulated data to measure the performance of our method and on real data coming from industry.
翻译:在本文中,我们描述了异常点检测方法及其在多变量功能数据中的解释性。异常点检测程序包括将该系列转换成特征矢量并使用隔离森林算法。可解释程序以SHAP系数的计算和受监督决策树的使用为基础。我们用模拟数据来测量我们方法的性能和来自行业的真实数据。