The spread of information through social media platforms can create environments possibly hostile to vulnerable communities and silence certain groups in society. To mitigate such instances, several models have been developed to detect hate and offensive speech. Since detecting hate and offensive speech in social media platforms could incorrectly exclude individuals from social media platforms, which can reduce trust, there is a need to create explainable and interpretable models. Thus, we build an explainable and interpretable high performance model based on the XGBoost algorithm, trained on Twitter data. For unbalanced Twitter data, XGboost outperformed the LSTM, AutoGluon, and ULMFiT models on hate speech detection with an F1 score of 0.75 compared to 0.38 and 0.37, and 0.38 respectively. When we down-sampled the data to three separate classes of approximately 5000 tweets, XGBoost performed better than LSTM, AutoGluon, and ULMFiT; with F1 scores for hate speech detection of 0.79 vs 0.69, 0.77, and 0.66 respectively. XGBoost also performed better than LSTM, AutoGluon, and ULMFiT in the down-sampled version for offensive speech detection with F1 score of 0.83 vs 0.88, 0.82, and 0.79 respectively. We use Shapley Additive Explanations (SHAP) on our XGBoost models' outputs to makes it explainable and interpretable compared to LSTM, AutoGluon and ULMFiT that are black-box models.


翻译:通过社交媒体平台传播信息,可以创造可能对弱势社区有敌意的环境,并使社会某些群体沉默。为了缓解这种情况,已经开发了几种模型来检测仇恨和冒犯性言论。由于在社交媒体平台中发现仇恨和冒犯性言论可能会错误地将个人排除在社交媒体平台之外,从而降低信任度,因此需要创建可解释和可解释的模式。因此,我们根据以Twitter数据培训的XGBoost算法,建立了一个可以解释和解释的高性能模式。关于不平衡的Twitter数据,XGboost比LSTM、AutoGluon和ULMFiT的仇恨言论检测模式高,F1得分为0.75分,而分别为0.38和0.37和0.38。当我们向三个不同的类别(大约5000 Twitter、AutoGluon和ULMFiT)抽取的数据比LSTM、Xborable 0.69 和0.8S Oralex 和ULMFS Oral)调,我们分别用0.88、0.8S 和0.88S 和0.8S NS Ex Ex 和ULFLFLULULULULULF 的检测,分别使用。

0
下载
关闭预览

相关内容

xgboost的全称是eXtreme Gradient Boosting,它是Gradient Boosting Machine的一个C++实现,并能够自动利用CPU的多线程进行并行,同时在算法上加以改进提高了精度。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员