Given a monocular face image as input, 3D face geometry reconstruction aims to recover a corresponding 3D face mesh. Recently, both optimization-based and learning-based face reconstruction methods have taken advantage of the emerging differentiable renderer and shown promising results. However, the differentiable renderer, mainly based on graphics rules, simplifies the realistic mechanism of the illumination, reflection, \etc, of the real world, thus cannot produce realistic images. This brings a lot of domain-shift noise to the optimization or training process. In this work, we introduce a novel Generative Adversarial Renderer (GAR) and propose to tailor its inverted version to the general fitting pipeline, to tackle the above problem. Specifically, the carefully designed neural renderer takes a face normal map and a latent code representing other factors as inputs and renders a realistic face image. Since the GAR learns to model the complicated real-world image, instead of relying on the simplified graphics rules, it is capable of producing realistic images, which essentially inhibits the domain-shift noise in training and optimization. Equipped with the elaborated GAR, we further proposed a novel approach to predict 3D face parameters, in which we first obtain fine initial parameters via Renderer Inverting and then refine it with gradient-based optimizers. Extensive experiments have been conducted to demonstrate the effectiveness of the proposed generative adversarial renderer and the novel optimization-based face reconstruction framework. Our method achieves state-of-the-art performances on multiple face reconstruction datasets.
翻译:3D 面部几何重建以单面图像作为投入, 3D 面部重建旨在恢复相应的 3D 面部网格。 最近, 优化基础和学习基础的面部重建方法都利用了新兴的可变版版面, 并展示了有希望的结果。 但是, 主要基于图形规则的可变版面, 简化了真实世界的光照、 反射、 和 etc 的现实机制, 因此无法生成现实图像。 这给优化或培训进程带来了大量的地段易变噪音。 在这项工作中, 我们引入了一个新的 GAR (GAR), 并提议将其反向反向版本的版面版面调整版面图像, 以解决上述问题。 具体地说, 精心设计的神经造型造型造型器使用一个正常的面部图和潜在代码, 代表了其他投入和真实的面部图像。 由于GAR (G) 学习了复杂的真实世界图像模型, 而不是基于简化的图像规则, 它能够生成现实图像,, 这从根本上抑制了在培训和优化的面面面面部面面面面部重建过程中的噪音, 。 在最初的GAR(AV) 上, 我们的模型上, 做了一个精化的模型上, 我们的模型的模型的升级的升级的模型的升级的模型,, 做了一个模拟的升级的模型的模型的升级的升级的模型,,, 我们用了我们的模型 的模型的模型 做了一个模拟的升级的模型, 做了一个模拟的模型, 做了一个模拟的模型, 做了一个新的的升级的升级的模型, 。