We propose a new method for decomposing seasonal data: STR (a Seasonal-Trend decomposition using Regression). Unlike other decomposition methods, STR allows for multiple seasonal and cyclic components, covariates, seasonal patterns that may have non-integer periods, and seasonality with complex topology. It can be used for time series with any regular time index including hourly, daily, weekly, monthly or quarterly data. It is competitive with existing methods when they exist, but tackles many more decomposition problem than other methods allow. STR is based on a regularized optimization, and so is somewhat related to ridge regression. Because it is based on a statistical model, we can easily compute confidence intervals for components, something that is not possible with most existing decomposition methods (such as STL, X-12-ARIMA, SEATS-TRAMO, etc.). Our model is implemented in the R package stR, so can be applied by anyone to their own data.
翻译:我们提出一种新的季节性数据分解方法:STR(使用递减法进行季节性-季节性-趋势分解)。与其他分解方法不同,STR允许多种季节性和周期性成分、共变、季节性模式,可能具有非整数期,以及具有复杂地形学的季节性。它可以用于时间序列,任何定期时间指数,包括小时、每日、每周、月度或季度数据。它与现有的方法相比具有竞争力,但处理的分解问题比其他方法所允许的要多得多。STR基于一种正规化的优化,因此与脊柱回归有些关联。由于它基于一种统计模型,我们可以很容易地计算成分的信心间隔,用大多数现有的分解方法(如STL、X-12-ARIMA、SATS-TRAMO等)是不可能的。我们的模型在R包标准R中应用,因此任何人都可以应用到自己的数据。