The density power divergence (DPD) and related measures have produced many useful statistical procedures which provide a good balance between model efficiency on one hand, and outlier stability or robustness on the other. The large number of citations received by the original DPD paper (Basu et al., 1998) and its many demonstrated applications indicate the popularity of these divergences and the related methods of inference. The estimators that are derived from this family of divergences are all M-estimators where the defining $\psi$ function is based explicitly on the form of the model density. The success of the minimum divergence estimators based on the density power divergence makes it imperative and meaningful to look for other, similar divergences in the same spirit. The logarithmic density power divergence (Jones et al., 2001), a logarithmic transform of the density power divergence, has also been very successful in producing inference procedures with a high degree of efficiency simultaneously with a high degree of robustness. This further strengthens the motivation to look for statistical divergences that are transforms of the density power divergence, or, alternatively, members of the functional density power divergence class. This note characterizes the functional density power divergence class, and thus identifies the available divergence measures within this construct that may possibly be explored for robust and efficient statistical inference.


翻译:密度功率差异(DPD)和相关措施产生了许多有用的统计程序,在模型效率与超值稳定性或稳健性之间提供了良好的平衡。最初的DPD文件(Basu等人,1998年)及其许多明显应用收到的大量引文表明这些差异的流行程度及其相关的推算方法。从这种差异类别中得出的估计数据都是M-估计数据,其中确定$\psi$的功能明确以模型密度的形式为基础。基于密度功率差异的最小差异估计数据的成功使得在同一精神下寻找其他类似差异的必要性和意义。对数密度功率差异(Jones等人,2001年),即密度差异的逻辑变化,也非常成功地产生了具有高度效率的推断程序,同时具有高度的稳健性。这进一步加强了寻找正在改变密度功率差异的统计差异的动力,或者是功能性权力差异的成员,从而查明了这种功能性差异,从而查明了目前存在的功能性密度差异。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月2日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员