Constant dimension codes (CDCs) have become an important object in coding theory due to their application in random network coding. The multilevel construction is one of the most effective ways to construct constant dimension codes. The paper is devoted to constructing CDCs by the multilevel construction. Precisely, we first choose an appropriate skeleton code based on the transformations of binary vectors related to the one-factorization of complete graphs; then we construct CDCs by using the chosen skeleton code, where quasi-pending blocks are used; finally, we calculate the dimensions by use of known constructions of optimal Ferrers diagram rank metric codes. As applications, we improve the lower bounds of $\overline{A}_q(n,8,6)$ for $16\leq n\leq 19.$
翻译:常维码(CDCs)因其在随机网络编码中的应用,已成为编码理论中的重要研究对象。多级构造是构建常维码最有效的方法之一。本文致力于通过多级构造方法构建常维码。具体而言,我们首先基于与完全图一因子分解相关的二元向量变换,选取合适的骨架码;随后利用所选的骨架码构建常维码,其中采用了准悬挂块技术;最后,通过已知的最优 Ferrers 图秩度量码构造计算维度参数。作为应用,我们改进了 $\overline{A}_q(n,8,6)$ 在 $16\leq n\leq 19$ 范围内的下界。