Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known.
翻译:多服务器工作系统,即工作需要在许多服务器同时提供服务的多服务器工作系统,在实践中广泛出现。基本上,多服务器工作系统的所有理论工作都侧重于优化利用,几乎对平均反应时间几乎一无所知。在更简单的设置中,例如各种已知规模的单一服务器工作设置,将平均反应时间最小化仅仅是确定小企业优先次序的问题。然而,对于多服务器工作系统来说,将小型工作列为优先事项是不够的,因为我们还必须确保服务器不会不必要地闲置。因此,尽可能减少平均反应时间需要优先考虑小型工作,同时尽量扩大吞吐量。我们的问题是如何实现这些共同目标。我们设计Server Filling-SRPT日程安排政策,这是在繁忙交通限制的多服务器工作模式中将平均反应时间最小化的第一个政策。除了证明这种重流量的结果外,我们还提出实证,ServerFilling-SRPT在所有负荷的现有调度政策上都超越了所有现有的排期政策,在更高负荷的排量上改进了。因为Serverling-SRPT政策需要了解工作规模,我们还定义了未知的大小。