Graphs are a ubiquitous data structure to model processes and relations in a wide range of domains. Examples include control-flow graphs in programs and semantic scene graphs in images. Identifying subgraph patterns in graphs is an important approach to understanding their structural properties. We propose a visual analytics system GraphQ to support human-in-the-loop, example-based, subgraph pattern search in a database containing many individual graphs. To support fast, interactive queries, we use graph neural networks (GNNs) to encode a graph as fixed-length latent vector representation, and perform subgraph matching in the latent space. Due to the complexity of the problem, it is still difficult to obtain accurate one-to-one node correspondences in the matching results that are crucial for visualization and interpretation. We, therefore, propose a novel GNN for node-alignment called NeuroAlign, to facilitate easy validation and interpretation of the query results. GraphQ provides a visual query interface with a query editor and a multi-scale visualization of the results, as well as a user feedback mechanism for refining the results with additional constraints. We demonstrate GraphQ through two example usage scenarios: analyzing reusable subroutines in program workflows and semantic scene graph search in images. Quantitative experiments show that NeuroAlign achieves 19-29% improvement in node-alignment accuracy compared to baseline GNN and provides up to 100x speedup compared to combinatorial algorithms. Our qualitative study with domain experts confirms the effectiveness for both usage scenarios.
翻译:图表是一种无处不在的数据结构,用于建模各种领域的进程和关系。示例包括程序中的控制流图和图像中的语义场景图。在图形中识别子图模式是了解其结构属性的一个重要方法。我们提议在包含许多单个图表的数据库中进行视觉分析系统图解Q,以支持在行人中以实例为基础的人与用户之间的对比。为了支持快速、互动查询,我们使用图形神经网络(GNNS)将图表编码为固定长度潜向矢量代表,并在潜在空间中进行子图匹配。由于问题的复杂性,在匹配结果中对视觉化和解释至关重要的匹配结果中,仍然难以获得准确的一对一对一节对应。因此,我们提议了一个名为NeuroAlign的新型配置配置,以便利对查询结果的简单校正和解释。TimaQ提供视觉查询界面界面界面界面界面界面界面界面界面界面界面界面界面界面界面界面界面界面界面界面,以及用于精度结果的对比用户反馈机制。我们用100次级精确度图像模型演示了内部的图像分析。我们通过两个模型分析模型的模型分析模型的精确度 。我们通过搜索模型的模型中, 展示了Sqreal 展示的模型的模型的模型的模型中,我们通过两个图像的精确度的精确度的模型的模型的精确度的精确性分析。