Graph Neural Networks (GNN) are commonly used for two tasks: (whole) graph classification and node classification. We formally introduce generically formulated decision problems for both tasks, corresponding to the following pattern: given a GNN, some specification of valid inputs, and some specification of valid outputs, decide whether there is a valid input satisfying the output specification. We then prove that graph classifier verification is undecidable in general, implying that there cannot be an algorithm surely guaranteeing the absence of misclassification of any kind. Additionally, we show that verification in the node classification case becomes decidable as soon as we restrict the degree of the considered graphs. Furthermore, we discuss possible changes to these results depending on the considered GNN model and specifications.
翻译:神经网络图( GNN) 通常用于两个任务 : (整) 图形分类和节点分类。 我们正式为这两个任务引入通用拟订的决定问题, 相应的模式如下: 给一个 GNN, 有效投入的某些规格, 有效输出的某些规格, 决定是否有符合输出规格的有效输入。 然后我们证明图形分类器的核查在总体上是不可量化的, 意味着不可能有算法保证不存在任何类型的分类错误。 此外, 我们显示, 只要我们限制考虑过的图表的程度, 结点分类的核查就变得可更改。 此外, 我们根据考虑过的 GNN 模型和规格, 讨论这些结果的可能变化 。