IR drop is a fundamental constraint required by almost all chip designs. However, its evaluation usually takes a long time that hinders mitigation techniques for fixing its violations. In this work, we develop a fast dynamic IR drop estimation technique, named PowerNet, based on a convolutional neural network (CNN). It can handle both vector-based and vectorless IR analyses. Moreover, the proposed CNN model is general and transferable to different designs. This is in contrast to most existing machine learning (ML) approaches, where a model is applicable only to a specific design. Experimental results show that PowerNet outperforms the latest ML method by 9% in accuracy for the challenging case of vectorless IR drop and achieves a 30 times speedup compared to an accurate IR drop commercial tool. Further, a mitigation tool guided by PowerNet reduces IR drop hotspots by 26% and 31% on two industrial designs, respectively, with very limited modification on their power grids.
翻译:IR 下降是几乎所有芯片设计都要求的基本限制。 但是, 其评价通常需要很长时间才能阻碍纠正其违规现象的缓解技术。 在这项工作中, 我们开发了一种快速动态IR 下降估计技术, 名为PowerNet, 以进化神经网络( CNN ) 为基础。 它可以处理基于矢量和无矢量的IR 分析。 此外, 拟议的CNN 模式是通用的, 并可以转移到不同的设计中。 这与大多数现有的机器学习( ML ) 方法形成鲜明对比, 其中模型只适用于特定的设计。 实验结果表明, PowerNet 将最新的 ML 方法比无矢量的IR 下降精确率高出9%, 并且比精确的IR 投放空的商业工具加速了30倍。 此外, 由PowNet 指导的减缓工具将两种工业设计的IR 降热点分别减少26%和31%, 其电网的修改非常有限。