The phenomenon of misinformation spreading in social media has developed a new form of active citizens who focus on tackling the problem by refuting posts that might contain misinformation. Automatically identifying and characterizing the behavior of such active citizens in social media is an important task in computational social science for complementing studies in misinformation analysis. In this paper, we study this task across different social media platforms (i.e., Twitter and Weibo) and languages (i.e., English and Chinese) for the first time. To this end, (1) we develop and make publicly available a new dataset of Weibo users mapped into one of the two categories (i.e., misinformation posters or active citizens); (2) we evaluate a battery of supervised models on our new Weibo dataset and an existing Twitter dataset which we repurpose for the task; and (3) we present an extensive analysis of the differences in language use between the two user categories.
翻译:在社交媒体中传播错误信息的现象已形成一种新的活跃公民形式,他们集中力量通过驳斥可能含有错误信息的文章来解决这一问题。在社交媒体中自动识别和描述这些活跃公民的行为是计算社会科学中的一项重要任务,以补充错误分析的研究。在本文中,我们首次在不同社交媒体平台(即Twitter和Weibo)和语言(即英语和汉语)中研究这项任务。为此,(1) 我们开发并公布一个新数据集,将Weibo用户绘制成两类(即错误信息海报或活跃公民)中的一类;(2) 我们评估我们新的Weibo数据集和现有推特数据集的一组受监督模型,我们为这项任务重新使用这些数据;(3) 我们对两种用户类别在语言使用上的差异进行广泛分析。