Software obfuscation is a crucial technology to protect intellectual property and manage digital rights within our society. Despite its huge practical importance, both commercial and academic state-of-the-art obfuscation methods are vulnerable to a plethora of automated deobfuscation attacks, such as symbolic execution, taint analysis, or program synthesis. While several enhanced obfuscation techniques were recently proposed to thwart taint analysis or symbolic execution, they either impose a prohibitive runtime overhead or can be removed in an automated way (e.g., via compiler optimizations). In general, these techniques suffer from focusing on a single attack vector, allowing an attacker to switch to other, more effective techniques, such as program synthesis. In this work, we present Loki, an approach for software obfuscation that is resilient against all known automated deobfuscation attacks. To this end, we use and efficiently combine multiple techniques, including a generic approach to synthesize formally verified expressions of arbitrary complexity. Contrary to state-of-the-art approaches that rely on a few hardcoded generation rules, our expressions are more diverse and harder to pattern match against. Even the most recent state-of-the-art research on Mixed-Boolean Arithmetic (MBA) deobfuscation fails to simplify them. Moreover, Loki protects against previously unaccounted attack vectors such as program synthesis, for which it reduces the success rate to merely 19%. In a comprehensive evaluation, we show that our design incurs significantly less overhead while providing a much stronger protection level compared to existing works.


翻译:尽管这些技术具有巨大的实际重要性,但商业和学术上最先进的混淆方法都容易受到大量自动脱钩攻击,例如象征性执行、污点分析或程序合成。虽然最近提出了几种强化的混淆技术,以挫败污染分析或象征性执行,但它们要么是高压运行时间管理,要么可以自动清除(例如,通过编译器优化)。一般而言,这些技术因专注于单一攻击矢量而受到影响,使得一个攻击者能够转换到其他更有效的技术,例如程序合成等。在此工作中,我们向Loki介绍一种软件迷雾处理方法,这种方法能够抵御所有已知的自动脱钩攻击或象征性执行。为此,我们使用并有效地结合多种技术,包括一种经正式核实的任意复杂性表达方式(例如,通过编译器优化),与最先进的方法相反,这种方法提供了依赖少数硬编码的向导矢量的矢量,使一个更全面攻击者能够转换到其他更有效的技术,例如程序合成。我们用最多样化和更难的版本设计程序来降低我们目前的成本,从而大大地降低目前的尾压。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员