Graph clustering and community detection are central problems in modern data mining. The increasing need for analyzing billion-scale data calls for faster and more scalable algorithms for these problems. There are certain trade-offs between the quality and speed of such clustering algorithms. In this paper, we design scalable algorithms that achieve high quality when evaluated based on ground truth. We develop a generalized sequential and shared-memory parallel framework based on the LambdaCC objective (introduced by Veldt et al.), which encompasses modularity and correlation clustering. Our framework consists of highly-optimized implementations that scale to large data sets of billions of edges and that obtain high-quality clusters compared to ground-truth data, on both unweighted and weighted graphs. Our empirical evaluation shows that this framework improves the state-of-the-art trade-offs between speed and quality of scalable community detection. For example, on a 30-core machine with two-way hyper-threading, our implementations achieve orders of magnitude speedups over other correlation clustering baselines, and up to 28.44x speedups over our own sequential baselines while maintaining or improving quality.
翻译:图表群集和社区探测是现代数据挖掘的核心问题。 分析10亿尺度数据的需求日益增长,要求对这些问题采用更快、更可扩展的算法。 这种群集算法在质量和速度之间有一定的权衡取舍。 在本文中,我们设计了可扩展的算法,在根据地面真相进行评估时能够达到高质量。 我们根据LambdaCC 目标(由Veldt等人介绍)开发了一个普遍、顺序和共享的平行框架,它包括模块化和相关组合。 我们的框架包括高度优化的实施,在未加权和加权的图表上,将数十亿边缘的大型数据集与地面真相数据相比较,并获得高质量的组群。 我们的经验评估表明,这个框架改进了可扩展社区探测速度和质量之间的最新平衡取舍。 例如,在具有双向超导读功能的30核心机器上,我们的实施实现比其他相关组合基线的量级加速,以及超过我们连续基线的28.44x速度,同时保持或改进质量。