We introduce the Pricing Engine package to enable the use of Double ML estimation techniques in general panel data settings. Customization allows the user to specify first-stage models, first-stage featurization, second stage treatment selection and second stage causal-modeling. We also introduce a DynamicDML class that allows the user to generate dynamic treatment-aware forecasts at a range of leads and to understand how the forecasts will vary as a function of causally estimated treatment parameters. The Pricing Engine is built on Python 3.5 and can be run on an Azure ML Workbench environment with the addition of only a few Python packages. This note provides high-level discussion of the Double ML method, describes the packages intended use and includes an example Jupyter notebook demonstrating application to some publicly available data. Installation of the package and additional technical documentation is available at $\href{https://github.com/bquistorff/pricingengine}{github.com/bquistorff/pricingengine}$.
翻译:我们引入了“定价引擎”软件包,以便在一般面板数据设置中使用双倍 ML 估算技术。定制化使用户能够指定第一阶段模型、第一阶段预产、第二阶段处理选择和第二阶段因果模型。我们还引入了“动态DML”类,使用户能够在一系列导线上生成动态的处理觉预报,并了解预测将如何因因因果估计处理参数而变化。“定价引擎”建在Python 3.5上,可在Azure ML 工作伯恩奇环境中运行,并仅添加几个Python软件包。本说明提供了对双倍 ML方法的高级别讨论,描述了预期使用的软件包,并包括一个示例“Jupyter”笔记本,演示对一些公开数据的应用。安装软件包和补充技术文件可在$href{https://github.com/quistorff/pinicengine ⁇ gitub.com/bquistorff/pricingengine}。