Most state-of-the-art approaches for Facial Action Unit (AU) detection rely upon evaluating facial expressions from static frames, encoding a snapshot of heightened facial activity. In real-world interactions, however, facial expressions are usually more subtle and evolve in a temporal manner requiring AU detection models to learn spatial as well as temporal information. In this paper, we focus on both spatial and spatio-temporal features encoding the temporal evolution of facial AU activation. For this purpose, we propose the Action Unit Lifecycle-Aware Capsule Network (AULA-Caps) that performs AU detection using both frame and sequence-level features. While at the frame-level the capsule layers of AULA-Caps learn spatial feature primitives to determine AU activations, at the sequence-level, it learns temporal dependencies between contiguous frames by focusing on relevant spatio-temporal segments in the sequence. The learnt feature capsules are routed together such that the model learns to selectively focus more on spatial or spatio-temporal information depending upon the AU lifecycle. The proposed model is evaluated on the commonly used BP4D and GFT benchmark datasets obtaining state-of-the-art results on both the datasets.


翻译:在现实世界的相互作用中,面部表达方式通常比较微妙,以时间方式演变,需要非盟的探测模型学习空间和时间信息。在本文件中,我们侧重于空间和空间时空特征,将面部激活的时间演进编码。为此,我们提议行动单位生命周期软件库网络(AULA-Caps)利用框架和顺序层面的特征对非盟进行检测。在框架层面,AULA-Caps的胶囊层学习空间特征原始特征,以确定非盟在顺序层面的启动,通过侧重于相关空间时空段,来了解毗连框架之间的时间依赖性。所学的地貌胶囊相互配合,以便模型根据非盟生命周期,选择更多关注空间或空间周期-时空信息。拟议模型将评估常用的BP4D和GFT基准数据集的结果。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
67+阅读 · 2020年2月29日
专知会员服务
25+阅读 · 2020年2月15日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
Github 项目推荐 | 用 Pytorch 实现的 Capsule Network
AI研习社
22+阅读 · 2018年3月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
VidTr: Video Transformer Without Convolutions
Arxiv
0+阅读 · 2021年4月23日
Arxiv
4+阅读 · 2019年8月7日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
Github 项目推荐 | 用 Pytorch 实现的 Capsule Network
AI研习社
22+阅读 · 2018年3月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员