Training a quantum machine learning model generally requires a large labeled dataset, which incurs high labeling and computational costs. To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn while maintaining the trained model's performance. Here, we design and implement two AL-enpowered variational quantum classifiers, to investigate the potential applications and effectiveness of AL in quantum machine learning. Firstly, we build a programmable free-space photonic quantum processor, which enables the programmed implementation of various hybrid quantum-classical computing algorithms. Then, we code the designed variational quantum classifier with AL into the quantum processor, and execute comparative tests for the classifiers with and without the AL strategy. The results validate the great advantage of AL in quantum machine learning, as it saves at most $85\%$ labeling efforts and $91.6\%$ percent computational efforts compared to the training without AL on a data classification task. Our results inspire AL's further applications in large-scale quantum machine learning to drastically reduce training data and speed up training, underpinning the exploration of practical quantum advantages in quantum physics or real-world applications.
翻译:培训量子机器学习模式通常需要一个大标记的数据集,这需要很高的标签和计算成本。为了降低这种成本,一个选择性的培训战略,称为积极学习(AL),只选择原始数据集的一个子集来学习,同时保持经过训练的模型的性能。在这里,我们设计和实施两个AL动力变异量子分类器,以调查AL在量子机器学习中的潜在应用和有效性。首先,我们建立一个可编程的自由空间光子量子处理器,使各种混合量子古典计算算法能够按程序实施。然后,我们把设计的变异量分类器与AL编码成量子处理器,对分类器进行对比测试,用和不使用AL战略进行。结果证实了AL在量子机器学习中的优势,因为它节省了最多85美元的标签努力和91.6美元的计算努力,而没有AL进行了数据分类任务的培训。我们的成果激励了AL在大规模量子机器学习方面的进一步应用,以大幅度减少培训数据并加快培训,支持对量子物理或现实世界应用中实际量子优势的探索。