Multi-modal Probabilistic Active Sensing (MMPAS) uses sensor fusion and probabilistic models to control the perception process of robotic sensing platforms. MMPAS is successfully employed in environmental exploration, collaborative mobile robotics, and target tracking, being fostered by the high performance guarantees on autonomous perception. In this context, we propose a bi-Radio-Visual PAS scheme to solve the transmitter discovery problem. Specifically, we firstly exploit the correlation between radio and visual measurements to learn a target detection model in a self-supervised manner. Then, the model is combined with antenna radiation anisotropies into a Bayesian Optimization framework that controls the platform. We show that the proposed algorithm attains an accuracy of 92%, overcoming two other probabilistic active sensing baselines.
翻译:多模式概率主动遥感(MMPAS)使用感应聚合和概率模型来控制机器人遥感平台的感知过程,MMPAS成功地用于环境探索、合作移动机器人和目标跟踪,并得到了自主感知高性能保障的促进。在这方面,我们提议了一个双频-视觉式的PAS计划来解决发射机发现问题。具体地说,我们首先利用无线电和视觉测量之间的相互关系,以自我监督的方式学习一个目标探测模型。然后,该模型与天线辐射麻醉剂相结合,形成一个控制该平台的巴耶西亚优化框架。我们表明,拟议的算法达到了92%的准确度,超越了另外两个概率活性测基线。