Expert systems have been used to enable computers to make recommendations and decisions. This paper presents the use of a machine learning trained expert system (MLES) for phishing site detection and fake news detection. Both topics share a similar goal: to design a rule-fact network that allows a computer to make explainable decisions like domain experts in each respective area. The phishing website detection study uses a MLES to detect potential phishing websites by analyzing site properties (like URL length and expiration time). The fake news detection study uses a MLES rule-fact network to gauge news story truthfulness based on factors such as emotion, the speaker's political affiliation status, and job. The two studies use different MLES network implementations, which are presented and compared herein. The fake news study utilized a more linear design while the phishing project utilized a more complex connection structure. Both networks' inputs are based on commonly available data sets.
翻译:使用专家系统使计算机能够提出建议和作出决定; 本文介绍了使用经过机器学习培训的专家系统(MLES)进行网上钓鱼站点探测和假新闻探测的情况; 两个专题的目标相似:设计一个规则-事实网络,使计算机能够作出可解释的决定,就像每个领域的域专家一样; 网上钓鱼网站探测研究使用MLES,通过分析网站属性(类似于URL长度和过期时间)来探测潜在的网上钓鱼网站; 假新闻探测研究使用MLES规则-事实网络,根据情感、演讲人的政治联系状况和工作等因素来测量新闻故事的真实性; 两项研究使用不同的MLES网络实施,此处介绍和比较。 假新闻研究使用更线性的设计,而光学项目则使用更复杂的连接结构。 两种网络的投入都以现有的数据集为基础。