The acyclic chromatic number of a graph is the least number of colors needed to properly color its vertices so that none of its cycles has only two colors. The acyclic chromatic index is the analogous graph parameter for edge colorings. We first show that the acyclic chromatic index is at most $2\Delta-1$, where $\Delta$ is the maximum degree of the graph. We then show that for all $\epsilon >0$ and for $\Delta$ large enough (depending on $\epsilon$), the acyclic chromatic number of the graph is at most $\lceil(2^{-1/3} +\epsilon) {\Delta}^{4/3} \rceil +\Delta+ 1$. Both results improve long chains of previous successive advances. Both are algorithmic, in the sense that the colorings are generated by randomized algorithms. However, in contrast with extant approaches, where the randomized algorithms assume the availability of enough colors to guarantee properness deterministically, and use additional colors for randomization in dealing with the bichromatic cycles, our algorithms may initially generate colorings that are not necessarily proper; they only aim at avoiding cycles where all pairs of edges, or vertices, that are one edge, or vertex, apart in a traversal of the cycle are homochromatic (of the same color). When this goal is reached, they check for properness and if necessary they repeat until properness is attained.
翻译:图形的周期性色素数是正确显示其脊椎颜色所需的颜色最少的颜色数, 使其周期中没有一个周期只有两种颜色。 周期性色谱指数是边缘颜色的类似图形参数。 我们首先显示, 周期性色谱指数最多为 2\ Delta-1 $\ Delta-1 $\ Delta$ 是图表的最大程度。 我们然后显示, 所有 $\ epsilon > 0$ 和 $\ Delta$ 都足够大( 取决于$\ epsilon$ ) 。 图表的周期性色谱数最多为 $\ lceil ( 2\\ -1 /3} ⁇ ⁇ { eepsilon) 。 我们的周期性色谱值最多为$2\ Delta4/ 3}\ \ rcelle + 1 $。 两者的结果都会改善前一连串进步的长链 。 从此意义上说, 颜色是由随机的算算算算算的。 然而, 与 相对而言,,, 当它们到达时, 随机性算算算算算算算算算算算算算算算算算算算算算算算它们只有足够的周期内足够的颜色,, 当它们会达到足够的颜色的颜色可以保证正确周期性周期性, 。 。 当它们为正常的周期内, 。 。 。 当它们会算算算算算算算算算算算算算算算算算算算算算算算算算算算算算一个正常的周期内, 。