The Skinned Multi-Person Linear (SMPL) model can represent a human body by mapping pose and shape parameters to body meshes. This has been shown to facilitate inferring 3D human pose and shape from images via different learning models. However, not all pose and shape parameter values yield physically-plausible or even realistic body meshes. In other words, SMPL is under-constrained and may thus lead to invalid results when used to reconstruct humans from images, either by directly optimizing its parameters, or by learning a mapping from the image to these parameters. In this paper, we therefore learn a prior that restricts the SMPL parameters to values that produce realistic poses via adversarial training. We show that our learned prior covers the diversity of the real-data distribution, facilitates optimization for 3D reconstruction from 2D keypoints, and yields better pose estimates when used for regression from images. We found that the prior based on spherical distribution gets the best results. Furthermore, in all these tasks, it outperforms the state-of-the-art VAE-based approach to constraining the SMPL parameters.
翻译:皮肤多人线性模型( SMPL) 可以通过映射形状和形状参数来代表人体。 这已被证明有助于通过不同的学习模型从图像中推断 3D 人形和形状。 但是, 并非所有的外形和形状参数值都产生物理可塑性甚至是现实的体模。 换句话说, SMPL 受控制不足, 从而在用图像来重建人类时, 通过直接优化其参数, 或者通过从图像到这些参数的映射, 可能导致无效的结果。 因此, 在本文中, 我们学习了将 SMPL 参数限制在通过对抗性训练产生现实的外形的值上。 我们显示, 我们先前学到的外观覆盖了真实数据分布的多样性, 便利了从 2D 键点重建 3D 的优化, 在使用图像回归时产生更好的估计值 。 我们发现, 先前基于球体分布的预估测得出了最佳结果。 此外, 在所有这些任务中, 它超越了基于 状态的 VAE 方法来限制 SMPL 参数 。