We present a computational approach to solution of the Kiefer-Weiss problem. Algorithms for construction of the optimal sampling plans and evaluation of their performance are proposed. In the particular case of Bernoulli observations, the proposed algorithms are implemented in the form of R program code. Using the developed computer program, we numerically compare the optimal tests with the respective sequential probability ratio test (SPRT) and the fixed sample size test, for a wide range of hypothesized values and type I and type II errors. The results are compared with those of D.~Freeman and L.~Weiss (Journal of the American Statistical Association, 59(1964)). The R source code for the algorithms of construction of optimal sampling plans and evaluation of their characteristics is available at https://github.com/tosinabase/Kiefer-Weiss.
翻译:我们提出了一个解决Kiefer-Weiss问题的计算方法。提出了用于构建最佳采样计划并评估其绩效的计算方法。在伯努利观测的具体情况下,拟议的算法以R程序代码的形式实施。我们利用开发的计算机程序,将最佳测试与相应的相继概率率测试(SPRT)和固定样本规模测试进行数字比较,以了解各种假设值以及第一类和第二类错误。结果与D.~Freeman和L.~Weiss(美国统计协会杂志,第59(1964)号)进行比较。最佳采样计划构建算法及其特征评估的R源代码见https://github.com/tosinabase/Kiefer-Weiss。