Automated Team Formation is becoming increasingly important for a plethora of applications in open source community projects, remote working platforms, as well as online educational systems. The latter case, in particular, poses significant challenges that are specific to the educational domain. Indeed, teaming students aims to accomplish far more than the successful completion of a specific task. It needs to ensure that all members in the team benefit from the collaborative work, while also ensuring that the participants are not discriminated with respect to their protected attributes, such as race and gender. Towards achieving these goals, this work introduces FERN, a fair team formation approach that promotes mutually beneficial peer learning, dictated by protected group fairness as equality of opportunity in collaborative learning. We formulate the problem as a multi-objective discrete optimization problem. We show this problem to be NP-hard and propose a heuristic hill-climbing algorithm. Extensive experiments on both synthetic and real-world datasets against well-known team formation techniques show the effectiveness of the proposed method.


翻译:对于开放源码社区项目、远程工作平台以及在线教育系统的大量应用而言,自动化团队形成越来越重要,特别是后者提出了教育领域特有的重大挑战。事实上,团队学生的目标远不止于成功完成具体任务。团队所有成员都需要确保团队所有成员都能从协作工作中受益,同时确保参与者在种族和性别等受保护属性方面不受歧视。为实现这些目标,这项工作引入了公平团队形成方法,即促进互利同行学习的公平团队形成方法,由受保护群体公平作为合作学习的平等机会决定。我们将此问题描述为多目标的离散优化问题。我们展示了这一问题是硬的,并提出了超自然的山坡算法。针对众所周知的团队形成技术对合成和真实世界数据集进行的广泛实验显示了拟议方法的有效性。

0
下载
关闭预览

相关内容

【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
37+阅读 · 2020年2月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
12+阅读 · 2019年7月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
7+阅读 · 2020年9月17日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
12+阅读 · 2019年7月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员