The Poisson equation is critical to get a self-consistent solution in plasma fluid simulations used for Hall effect thrusters and streamer discharges, since the Poisson solution appears as a source term of the unsteady nonlinear flow equations. As a first step, solving the 2D Poisson equation with zero Dirichlet boundary conditions using a deep neural network is investigated using multiple-scale architectures, defined in terms of number of branches, depth and receptive field. One key objective is to better understand how neural networks learn the Poisson solutions and provide guidelines to achieve optimal network configurations, especially when coupled to the time-varying Euler equations with plasma source terms. Here, the Receptive Field is found critical to correctly capture large topological structures of the field. The investigation of multiple architectures, losses, and hyperparameters provides an optimal network to solve accurately the steady Poisson problem. The performance of the optimal neural network solver, called PlasmaNet, is then monitored on meshes with increasing number of nodes, and compared with classical parallel linear solvers. Next, PlasmaNet is coupled with an unsteady Euler plasma fluid equations solver in the context of the electron plasma oscillation test case. In this time-evolving problem, a physical loss is necessary to produce a stable simulation. PlasmaNet is finally tested on a more complex case of discharge propagation involving chemistry and advection. The guidelines established in previous sections are applied to build the CNN to solve the same Poisson equation in cylindrical coordinates with different boundary conditions. Results reveal good CNN predictions and pave the way to new computational strategies using modern GPU-based hardware to predict unsteady problems involving a Poisson equation.
翻译:Poisson 方程式对于在用于 Hall 效果推进器和流流体排放的等离子体液体模拟中找到一个自我一致的解决方案至关重要, 因为 Poisson 方程式似乎是一个不稳定的非线性流方程式的来源术语。 作为第一步, 使用深层神经网络解决2D Poisson 方程式, 使用深层神经网络解决二D Pirichlet 边界条件 。 以分支数量、 深度和可接受字段来定义的多重规模结构来调查 。 一个关键目标是更好地了解神经网络如何学习 Poisson 方程式解决方案, 并提供实现最佳网络配置的指导方针, 特别是当与具有等离子源源值 Euler 的 Eulson 方程式连接时。 这里, 感知性字段被认为对于正确捕捉外地的大表性结构结构结构至关重要。 对多个结构、 损耗损、 和超度参数的调查为精确解决稳定的Poisson 问题提供了最佳网络解决方案。 最优化的神经网络解决方案解决方案解决方案解决方案的性解决方案的性功能, 即以越来越多的节点数计算, 和与古性线性线性线性内线性流流流流流变变变的内解解解解解解解法变变变变变变法在Eralalalalalalalalalalalalalal 法的内, 法则在Eral decal decal decase 。