Constructive dualities have been recently proposed for some lattice based algebras and a related project has been outlined by Holliday and Bezhanishvili, aiming at obtaining "choice-free spatial dualities for other classes of algebras [$\ldots$], giving rise to choice-free completeness proofs for non-classical logics''. We present in this article a way to complete the Holliday-Bezhanishvili project (uniformly, for any normal lattice expansion) by recasting recent relational representation and duality results in a choice-free manner. These results have some affinity with the Moshier and Jipsen duality for bounded lattices with quasi-operators, except for aiming at representing operators by relations, extending the J\'{o}nsson-Tarski approach for BAOs, and Dunn's follow up approach for distributive gaggles, to contexts where distribution may not be assumed. To illustrate, we apply the framework to lattices (and their logics) with some form or other of a (quasi)complementation operator, obtaining canonical extensions in relational frames and choice-free dualities for lattices with a minimal, or a Galois quasi-complement, or involutive lattices, including De Morgan algebras, as well as Ortholattices and Boolean algebras, as special cases.
翻译:最近,Holliday 和 Bezhanishvili 概述了一些基于 lattice 的代数以及一个相关项目。 Holliday 和 Bezhanishvili 概述了这两个项目,目的是为其他类代数[$\ldots] 获得“无选择性的空间二元性”,从而为非古典逻辑提供无选择的完整证明。我们在本篇文章中提出了一个方法,通过重编最近的关系代表制和双重性结果,来完成Holliday-Bezhanishvili项目(统一地,任何正常的拉tic 扩展) 。这些结果与moshier 和 Jipsen 其他类代数具有“ 无选择性的空间二元性 ”, 目的是通过关系代表操作者, 扩大 BAOs 的 J\\\ {o}nsson-Tarski 方法, 以及 Dunn's 后续的分解调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调,,, 和调调调调调调调调调调调和调和调和调调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调调调调调调调调调调调调调调调调,,,,,作为一种形式的调调调调调调调调调调调调调和调调调调调调调调调调调调调调调调调调调,作为一种或调调,作为一种或调调调调调,,作为一种或调调调调调调制,作为一种或调调调调和,作为一种或调制,作为一种或平的比,作为一种或调制,作为一种变制,作为一种变制,作为一种变式,作为一种变制,作为一种或结构,作为一种形式的,作为一种或双色,作为一种或双色,作为一种形式的,或双色,作为一种或双色的,作为一种或双色,作为一种或双色的,作为一种变色,作为一种形式的,作为一种或双色的