The hull of a linear code over finite fields is the intersection of the code and its dual, and linear codes with small hulls have applications in computational complexity and information protection. Linear codes with the smallest hull are LCD codes, which have been widely studied. Recently, several papers were devoted to related LCD codes over finite fields with size greater than 3 to linear codes with one-dimensional or higher dimensional hull. Therefore, an interesting and non-trivial problem is to study binary linear codes with one-dimensional hull with connection to binary LCD codes. The objective of this paper is to study some properties of binary linear codes with one-dimensional hull, and establish their relation with binary LCD codes. Some interesting inequalities are thus obtained. Using such a characterization, we study the largest minimum distance $d_{one}(n,k)$ among all binary linear $[n,k]$ codes with one-dimensional hull. We determine the largest minimum distances $d_{one}(n,n-k)$ for $ k\leq 5$ and $d_{one}(n,k)$ for $k\leq 4$ or $14\leq n\leq 24$. We partially determine the exact value of $d_{one}(n,k)$ for $k=5$ or $25\leq n\leq 30$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员