We propose efficient Langevin Monte Carlo algorithms for sampling distributions with nonsmooth convex composite potentials, which is the sum of a continuously differentiable function and a possibly nonsmooth function. We devise such algorithms leveraging recent advances in convex analysis and optimization methods involving Bregman divergences, namely the Bregman--Moreau envelopes and the Bregman proximity operators, and in the Langevin Monte Carlo algorithms reminiscent of mirror descent. The proposed algorithms extend existing Langevin Monte Carlo algorithms in two aspects -- the ability to sample nonsmooth distributions with mirror descent-like algorithms, and the use of the more general Bregman--Moreau envelope in place of the Moreau envelope as a smooth approximation of the nonsmooth part of the potential. A particular case of the proposed scheme is reminiscent of the Bregman proximal gradient algorithm. The efficiency of the proposed methodology is illustrated with various sampling tasks at which existing Langevin Monte Carlo methods are known to perform poorly.
翻译:我们提出高效的Langevin Monte Carlo 算法,用于利用非光滑的锥形合成潜力进行抽样分布,这是持续不同功能和可能非光滑功能的总和。我们设计这种算法,利用涉及Bregman差异(即Bregman-Moreau信封和Bregman近距离操作员)的convex分析与优化方法的最新进展,以及Langevin Monte Carlo 算法中反映镜底下降的微缩缩缩缩缩缩缩比例。提议的算法在两个方面扩展了现有的Langevin Monte Carlo 算法 -- -- 即能够用镜像的下行式算法对非光滑动分布进行抽样分析,以及用更通用的Bregman-Moreau信封取代Moreau信封作为潜力中非光谱部分的平稳近似值。拟议办法的一个具体案例是Bregman proximal 缩略算法的回溯度。拟议方法的效率通过各种抽样任务加以说明,已知Langevin Monte Carlo 方法表现不佳。